High Consistency Silicone Rubber

SPECIALIST IN SILICONE RUBBER TECHNOLOGY

Contents

- 01 INTRODUCTION
- 02 HRS HISTORY
- 04 OVERVIEW OF THE SILICONE RUBBER

05 PROPERTIES OF SILICONE RUBBERS

- · General Properties
- Heat Resistance
- Cold Resistance
- Weatherability
- · Electric Properties
- Electric Conductivity
- Radiation Resistance
- Steam Resistance
- Flame Retardancy
- · Oil Resistance
- Non toxic
- 11 APPLICATIONS BY INDUSTRY
- 12 HCR (High CONSISTENCY SILICONE RUBBER)
- 26 SELECTION GUIDE HCR
- 29 CERTIFICATES

SPECIALIST IN SILICONE RUBBER TECHNOLOGY

Thanks for your interest. We will make every effort to meet your service requirements by developing new technologies and products through continuous research and development.

EVERYTHING FOR YOUR LIFE - HRS

HRS Co., Ltd., was established in 1981 and developed silicone rubber compounds for the first time in South Korea. We now provide a variety of silicone rubber products such as Silicone Gum, Vinyl Polymer, HCR, LSR, RTV and silicone rubber molded and extruded articles, Dental Impression Materials.

We have focused on developing customized and environmental friendly silicone rubber products for industries such as electric and electronics, IT, automobile, machinery, medical tools and consumer goods and have customers in over 20 countries worldwide. HRS now offers more than 200 products and services under the company's HRS brand.

HRS Co., Ltd, now makes an effort to further expand the markets to come up to various customers' expectations for the qualified and specialized silicone rubber molded and extruded articles based on 32 years know-how about silicone rubber fabrication and basic technologies.

Our specialty is providing technical solutions to customers' needs not only for the raw materials but silicone rubber molded and extruded products.

• SEOUL OFFICE

Main Businesses

Trading Team Finance Team HR/IR Team Strategy & Planning Team

PYONGTAEK PLANT

Main Businesses
 HCR Silicone Rubber
 LSR Silicone Rubber
 RTV(F/S) Silicone Rubber
 Silicone Gum/Polymer
 DM Dental Impression Materialsi

1978~1985

1978. 05	Established Hae Ryong Trading
	Company (Importing business of
	silicone rubber)
1981.07	Incorporated as Hae Ryong
	(started developing the manufacturing
	technology of silicone rubber
	Compound)
1983.10	Awarded for New Material
	development by the minister of the
	Ministry of commerce and industry
1985.03	Changed the company name to Hae
	Ryong Silicone Co., Ltd. Moved to the
	new factory in Gimpo City
1005 10	

1985.12 Acquired UL-94V0

1986~1990

1986.08	Developed the technology for primary
	synthesis of silicone gum for the first
	time in the country through a
	collaborate research with korea
	Advanced institute of Science and
	technology (KAIST)
1987.06	Developed the basic technology for
	silicone gum compounding
1990.09	Made a contract with Bayer AG in
	Germany for technological affiliation
	and sales in Southeast Asia

▶ 1991 ~ 1995

1991.07	Developed the technology to
	manufacture the silicone rubber for
	general purpose silicone rubber for
	general purpose molding. UL standard
	certification was acquired for that and
	the sales in domestic and foreign
	market of it was started. (for the first
	time in Korea).
1991.10	Established sales agencies in
	Southeast Asia (8 Countries including
	Taiwan and Malaysia)
1993.05	Supplied and installed Fire Stop Seal
	for the 3rd and 4th Yeonggwang
	nuclear power plant (the first
	localization in the country)
1993.11	Developed the technology to
	manufacture the silicone RTV foam
	(the project to develop basic industrial
	technologies implemented in
	collaboration with National Industrial
	Technology Center)

 Main Businesses Rubber Article Silicone Sheet (S/S)

\bigcirc **CHINA PLANT**

 Main Businesses Rubber Article Silicone Sheet (S/S)

1995 ~ 2000

- 1995. 11 Exported silicone rubber amounting more than U\$5,000,000.00 for the first time in the country (received the tower of 5 million dollar export as the prize). Awarded the medal of commendation from the governor of Gyeonggi-do for the merits of export (no.2222) *The tower of 5 million US dollar export
- 1995. 12 Acquired the certification for EM mark (silicone RTV foam) - National Industrial Technology Center no. 95-61
 1996. 10 Acquired ISO 9001 certification.

2000 ~ 2005

2000.05 Listed in KOSDAQ

- **2002. 11** The company acquired the patent for the addition- cure type low hardness silicone rubber with excellent magneto-
- 2004.08 The construction of Pyeongtaek factory was completed (production facility for silicone polymer, HCR and LSR)
- 2005. 06 The patent for shielding silicone rubber of self-adhesive electromagnetic waves was registerd.

2006 ~

2006.08	Change of representative directors
	(collaborative representative directors;
	Kang,Seong-ja, Ji, Won-Yeong)
2007.03	Hae Ryong Silicone Company Limited
	\rightarrow HRS Company Limited
2007.07	Form strategic alliance with Dowcorning
	Corporation for HCR business
2007.10	Acquisition of co-patent with Comtech
	Chemicals Ltd for "Manufacture process of
	low hardness and low viscosity silicone foam
2007.11	Acquired ISO-14001
2007.11 2008.10	Acquired ISO-14001 The construction of Asan factory was begun.
2007. 11 2008. 10 2008. 11	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more
2007. 11 2008. 10 2008. 11	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00
2007. 11 2008. 10 2008. 11	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00 * The tower of 10 million US dollar export
2007. 11 2008. 10 2008. 11 2010. 07	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00 * The tower of 10 million US dollar export Supply Agreement between Hilti and HRS
2007. 11 2008. 10 2008. 11 2010. 07 2011. 05	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00 * The tower of 10 million US dollar export Supply Agreement between Hilti and HRS SUZHOU HAERYONG SILICONE CO., LTD.
2007. 11 2008. 10 2008. 11 2010. 07 2011. 05	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00 * The tower of 10 million US dollar export Supply Agreement between Hilti and HRS SUZHOU HAERYONG SILICONE CO., LTD. was established in china
2007. 11 2008. 10 2008. 11 2010. 07 2011. 05 2012. 10	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00 * The tower of 10 million US dollar export Supply Agreement between Hilti and HRS SUZHOU HAERYONG SILICONE CO., LTD. was established in china Acquired the patent for Silicon polymer
2007. 11 2008. 10 2008. 11 2010. 07 2011. 05 2012. 10	Acquired ISO-14001 The construction of Asan factory was begun. Exported silicone rubber amounting more than U\$10,000,000.00 * The tower of 10 million US dollar export Supply Agreement between Hilti and HRS SUZHOU HAERYONG SILICONE CO., LTD. was established in china Acquired the patent for Silicon polymer composition for backlight unit buffer spacer

SPECIALIST IN SILICONE RUBBER TECHNOLOGY

Thanks for your interest. We will make every effort to meet your service requirements by developing new technologies and products through continuous research and development.

OVERVIEW OF THE SILICONE RUBBER

Silicone rubber's special features such as "Organosiloxanes Polymer" has been originated from its unique molecular structure that they carry both inorganic and organic properties unlike other organic rubbers. In other words, due to the Si-O bond of Silicone Rubber and its inorganic properties, Silicone Rubber is superior to ordinary organic rubbers in terms of heat resistance, chemical stability, electrical insulating, abrasion resistance, weatherability and ozone resistance etc...

With these unique characteristics, Silicone Rubber has been widely used to replace petrochemical products in various industries like aerospace, munitions industry, automobile, construction, electric and electronics, medical and food processing industry. Recently, these scopes of silicone application have been expanding at a great speed by the demand of industries that want more reliable elastomer.

Main Characteristics of Silicone Rubber:

- Excellent High and Low Temperature Resistance.
- Excellent Electrical Properties.
- Physiological Inertness.
- Excellent Weatherability.
- Oil Resistance.
- Flame Retardant.

GENERAL PROPERTIES

1. High bonding energy

Silicone rubber has siloxane bond (Si-O) of molecular structure as the main chains. While carbon bond, C-C, carries 84.9 Kcal/mol, siloxane bond carries 106.0 Kcal/mol It shows that siloxane bond has greater capacity and stability. As a result, silicone rubber has better heat resistance, electric conductivity and chemical stability than any other ordinary organic rubbers. Siloxane bond's energetic stability is secured due to sharp difference between Si and O in terms of electro-negativity making Si-O to be closest to ionic bond.

Classification	Bonding Energy Kcal/mol (KJ/mol)					
	С	SI				
С	84.9 (349)	58-80 (240-340)				
Si	58-80 (240-340)	45 (189)				
н	98.8 (414)	72.6 (304)				
0	83.2 (349)	106.0 (423)				

2. Low intermolecular force with spiral structure

With its coil shaped spiral structure and low intermolecular force, silicone (dimethylpolysiloxane) is highly elastic and compressible. Furthermore as methyl groups are located in the outside of coil structure, they are free to rotate on its own. As a result silicone rubber has outstanding water repellency and contact resistance.

Heat Resistance

Heat resistance of silicone rubber is the one of its most excellent properties and provides the basis for its creation. Silicone rubber is far better than organic rubbers in terms of heat resistance. At 150°C, almost no alterations of properties take place that it may be used semi permanently. Furthermore, silicone rubber withstands use for over 10,000 consecutive hours even at 200°C and, if used for a shorter term, it may also be used at 300°C as well. Boasting this excellent heat resistance, silicone rubbers are widely used to manufacture rubber components and parts used in high-temperature places.

Cold Resistance

Cold resistance of silicone rubber is the finest among organic rubbers. It provides a critical reason behind the creation of silicone rubbers. Natural and ordinary rubbers demonstrate significant changes in formation depending on temperatures. They become soft at high temperatures and hard at low temperatures so that they may not be able to used any more. While other organic rubbers may only be used up to -20° C or -30° C, silicone rubber maintains its elasticity between -55° C and -70° C. Some of the products even withstand temperatures as extremely low as under -100° C.

Weatherability

Silicone rubber has superb ozone resistance. Due to corona-discharged ozone, other organic rubbers become soften at a higher speed, but silicone rubber is rarely affected. Furthermore, even long-term exposures to UV rays, winds, or rain silicone rubber's physical properties will not be changed substantially.

<Result of long-term outdoor expose testing of various rubbers>

Test Condition	Time until surfac apparer	e cracks are first it (years)	Time of sunlight exposure until elongation is 1/2 that of the initial value (years)			
Location	Panama	Rock Island	Panama	Rock Island		
Nitrile	0.5-1	-	7	10		
Chloroprene	-	-	8.5	over 10 years		
VMQ	over 10 years	over 10 years	over 10 years	over 10 years to decline to 75%		

Electric Properties

Silicone rubber is being used for insulation materials at high temperature with its superior insulation properties. It is particularly known for wide range in temperature and volume resistance between $10^{14} \, \Omega \cdot \text{cm}$ and $10^{16} \, \Omega \cdot \text{cm}$. Silicone rubber experiences lowest change in performance in wet condition and is the best fit for being used as insulation materials. By adding special conductive fillers, conductive silicone may also be manufactured. In particular, silicone rubber is strongly resistant against corona discharge compares to others, while being widely used for insulation purposes in high voltage environments.

Electric Conductivity

Conductive silicone rubber is a compound comprising conductive materials such as carbon black, silver and copper. Depending on the type of silicone rubber, they range in resistance level from a few $\Omega \cdot \text{cm}$ to $10^{3} \Omega \cdot \text{cm}$. One of the properties is that its electric properties are not much affected by variance in temperatures. No rubber materials are not found yet to match the electric properties of silicone rubber over 200°C. Conductive silicone rubber is also being used for keyboard interfaces, antistatic parts, and shield materials for high voltage cables.

Radiation Resistance

Compares to other organic rubbers, ordinary (dimethyl) silicone rubber has no special performance in terms of anti radiation. However, methyl phenyl silicone rubber adopting phenyl group in polymer molecules does have radiation resistance to be used for cables at nuclear power plants and connectors.

Steam Resistance

Silicone rubber absorbs only 1% of moisture even after experiencing long exposure to water without being affected in mechanical strength or electric properties. Generally, silicone rubber does not deteriorate even after having contact with steam under atmospheric pressure. In high pressure steam over 150°..., siloxane polymer is cut off and rubber properties decline. Such a property may be improved by the composition of silicone rubber, selection of curing agent, and the post curing. Other modified products are also available with improved steam and boiling water resistance.

Flame Retardancy

Silicone rubber does not easily burn when in contact with a flame, but would burn out consistently once ignited. However, by adding a small amount of flame retardant, it may become flame retardant and self-extinguisher. Flame retardant silicone rubbers presently in use would scarcely produce toxic gas during combustion since they do not contain organic halogen compounds discovered in organic polymers.

<Standards on Classifying Combustibility of UL 94>

Classification	Standards
94V-0	Time to burn is less than 10 seconds at most
94V-1	Time to burn is less than 30 seconds at most
94 HB	Failed to burn the average 4 inches during a horizontal combustibility test

Oil Resistance

Silicone rubber is inferior to ordinary organic rubber in oil resistance at room temperature. However, for automobiles or aircrafts that require high temperature resistance, it demonstrates higher performance. Even when in contact with automobile oil, silicone rubber does not inflate significantly by reason of swelling. It swells in non polar organic compounds such as benzene, toluene, and gasoline. But its materials do not disintegrate or dissolve unlike ordinary organic rubbers. If solvent is removed, it would be restored to the original conditions.

<Oil Resistance of General Silicone Rubbers>

	Optimized Condition		Change in Prop	perties	
Oii Type	°C / Time	Hardness (%)	Tension (%)	Elongation (%)	Change in Volume (%)
ASTM NO. 1	150 / 168	-10	-10	-10	+10
ASTM NO. 2	150 / 168	-25	-20	-20	+40
Ford Brake Fluid	150 / 72	-20	-60	-40	+15
Diesel Fluid		-30	-	-	+105
Gasoline		-20	-	-	+165
Motor oil (SAS #30)	175 / 168	-8	-70	-65	-8

Non toxic

Silicone rubber is physiologically inert, and is thus used for baby nipple and stoppers in medical application. Silicone rubber is also very ideal elastomer for making swimming caps and goggles.

APPLICATIONS BY INDUSTRY

Industry Classifcation	Use	Customize	
	Key Board Pad		
Office			
Equipments			
Home Appliance		Extrudability, Heat Resistance, Low compression set	
Industry			
	ANODE CAP	Anode Cap's Electric Insulation, Flame Retardancy, Heat Resistance	
	Spark Plug's Boots	Heat Resistance, Insulation, Oil Resistance	
	Muffler Holder's	Heat Resistance, Low compression set	
Automobiles	Radiator Hose's	Heat Resistance, Cold Resistance, Anti-freezing,	
Automobiles		Low compression set, Hot water resistance	
	Water Resistant Connector's	Heat Resistance, Oil Resistance, Oil Breed	
	Oil Seal, Oil Ring's	Heat Resistance, Oil Resistance, Non-abrasive, Low compression set	
Leisure Industry	Goggles, Snorkel, Swiming Cap, Goggle Band,	Transparency, High Strength, High tear strength,	
	Mouthpiece, Golf Club Grip	Non Toxicness, Sensitivity	
	Baby nipple, Baby teeth developer	Non Toxicness, High Transparency	
Treatment/	Drain Hose	Non Toxicness, High elongation	
Sanitation	Ringel Cap	Non Toxicness, High tear strength	
Carmation	Automatic Vending Machine Hose	Transparency, Non Toxicness, Extrudability, Heat Resistance	
	Carry to Go Packing	Non Toxicness, Low compression set	
	Refrigerator Defroster Wire,	Heat Resistance. Cold Resistance. Weatherability. Electric Insulation	
Electric Wire	Heat Wire, Neon Wire,	Flame Retardancy, Heat Conductivity, Extrudability	
	Ignition Wire, Home Appliances' Lead Wire		
П	Lamp Holder, Thermal Sheet,	Heat Resistance Flame Retardancy, Thermal Conductivity	
	Anode Cap		
Electrical Power	Suspension Insulator, Line Post Insulator,	Heat Resistance Flame Retardancy Flectrical Insulation	
	Surge Arrestor, Connector		
Others	Mold Cast, Gas Mask	Heat Resistance, High Tear Strength,	
Others		Physiological Inertness, High Tensile Strength	

GENERAL PURPOSE FOR MOLDING SILICONE RUBBER

HR-1901U Series are up grade general-purpose silicone rubber which are used for wide range of applications. There mill workability, mold release ability. There are good mechanical properties

Grad Properties	e No.	Test Methods	HR- 1931U(T)	HR- 1941U(T)	HR- 1951U(T)	HR- 1961U(T)	HR- 1971U(T)	HR- 1975U(T)	HR- 1981U(T)	HR- 1961U(G)	HR- 971U(G)	HR- 1981U(G)
Colors		ASTM E 1767				Translucent				Natural gray		
William's plas	sticity	ADTM D 926	160	180	210	230	240	260	280	230	250	280
Specific gra	vity	ASTM D 792	1.09	1.13	1.15	1.16	1.20	1.20	1.21	1.24	1.35	1.42
Hardnes	S	ASTM D2240	30	40	50	60	70	75	80	60	70	80
Tensile Strengt	h(MPa)	ASTM D412	6.5	7.5	8.5	8	8	9.5	8.5	7.5	8	8
Elongation	(%)	ASTM D412	500	400	300	230	200	210	160	210	150	120
Tear strength	"B"	ASTM D624 "B"	8	8	8.5	8.5	8.5	9	8	8	8	8
(kgf/cm)	"C"	ASTM D624 "C"	16	18	20	20	22	23	18	20	18	16
Rebound resilie	nce (%)	ASTM D 1054	61	66	70	65	62	56	60	54	55	42
Compression s	set (%)	ASTM D395	16	14	13	15	15	12	14	19	21	26
Linear shrinka	ge (%)	JIS K 6249	4.2	4.1	3.9	3.8	3.6	3.5	3.7	3.6	3	3

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)

(Compression Set : 177 °C×22hrs)

FEATURES

- Good physical properties.
- Excellent processability in press molding & injection and all other process.
- Price Advantage
- Qualified UL94HB.
- Comply with FDA Reg. 21 CFR, 177.2600
- Good Rebound resilience

APPLICATIONS

- General Industrial Parts
- Electronic Parts, Keypad, O/A rolls
- Food contact parts, packing
- Automotive parts

GENERAL PURPOSE FOR EXTRUSION SILICONE RUBBER

General Extrusion Silicone Rubber are designed for use in multi purpose application with molding, injection, calendaring, and extrusion of profiles and wires. There are designed to extending fillers and additives. Also, carious hardness levels can be made by mixing each grade.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)

Grade No. Properties	Test Methods	BASE-30	BASE-50	BASE-60	BASE-70	BASE-75
Colors	ASTM E 1767			Transparent		
William's plasticity	ADTM D 926	150	210	230	250	260
Specific gravity	ASTM D 792	1.08	1.14	1.16	1.18	1.19
Hardness	ASTM D2240	31	51	60	70	75
Tensile Strength(MPa)	ASTM D412	7.5	9	9.5	10	9
Elongation (%)	ASTM D412	600	350	330	290	240
Tear strength (kgf.cm)	ASTM D624 "B"	10	10	10	11	12.5
Linear shrinkage (%)	JIS K 6249	4.3	4.2	4.1	4.0	3.7
Volume resistivity (ohm.cm)	ASTM D 257	1015	1015	1015	1015	1015
Dielectric strength (kV/mm)	ASTM D 149	25	26	26	27	27

FEATURES

- Excellent physical properties
- Excellent extrusion processability and good molding
- Easy to blending for intermediate hardness control
- Good heat resistant up to $250\,{\rm c}\sim 280\,{\rm c}$ with the heat additives HT-100 or HT-300

- All molded articles gaskets, packing, O-ring, profiles and general high temp wires
- Food contact packing
- Electrical article (Wire & cable)

LOW HARDNESS SILICONE RUBBER

There Grade have a low hardness. (Shore A 5 \sim 20)in the cure State. There can be used in Silicone rubber products such as sporting goods and medical articles that require a soft feel.

Catalyst: HC-8/1.8phr	(171°C ×10min/200 °C ×4hrs)

Typical Properties	Test Methods	SW-5	SW-8	SW-20
Colors	ASTM E 1767	Translucent		
William's plasticity	ADTM D 926	90	90	120
Specific gravity	ASTM D 792	1.01	1.01	1.06
Hardness	ASTM D2240	8	10	20
Tensile Strength(MPa)	ASTM D412	2.5	4	5.5
Elongation (%)	ASTM D412	1100	1000	950
	ASTM D624 "B"	4	4	12
rear strengtn(kgi/cm)	ASTM D624 "C"	7	10	25
Compression set (%)	ASTM D395	47	22	18
Linear shrinkage (%)	JIS K 6249	4.4	4.2	4.3

• FEATURES

- Low Hardness and high Elongation Property
- Excellent process ability in molding & Injection
- Complies with FDA and BfR recommendations for articles in contact with food

APPLICATIONS

- Swimming Cap, Goggle bands
- Baby Care
- High elastic article (Strip, Tape)

SUPER HIGH HARDNESS SILICONE RUBBER

There are Special grade of silicone rubber that is specially designed as super shore A hardness 90 ± 3 with transparent color.

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)

Grade No. Properties	Test Methods	HR-1991U(T)	HR-2290U (T)
Colors	ASTM E 1767	Trans	lucent
William's plasticity	ADTM D 926	300	450
Specific gravity	ASTM D 792	1.24	1.25
Hardness	ASTM D2240	90	9
Tensile Strength (MPa)	ASTM D412	8.5	9.5
Elongation (%)	ASTM D412	150	100
Toor strongth (kgf/cm)	ASTM D624 "B"	12	13
real strength (kgi/chi)	ASTM D624 "C"	30	35
Rebound resilience (%)	ASTM D 1054	50	50
Compression set (%)	ASTM D395	12	16
Linear shrinkage (%)	JIS K 6249	3.6	3.8

(Compression Set : 177 °C×22hrs)

• FEATURES

- High Hardness 90 shore A
- Transparent
- High Williams plasticity and high green strength
- Good mechanical properties
- Comply with FDA Reg. 21 CFR 177. 2600. for food contact applications

- Keytop of keypad
- O-ring, Gasket, Seals
- Food Contact article (Kitchenware, bottles)

HIGH TEAR STRENGTH SILICONE RUBBER

There are grades specially designed for high tear strength property with various curing agents such as 2,4-DCLBP, 2,5-DHBP. There are used for applications such as parts with complicated shapes, large molded parts, etc.

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)						
Typical Properties	Test Methods	HR-2500/40	HR-2500/50	HR-2500/60	HR-2500/70	
Colors	ASTM E 1767		Trans	parent		
William's plasticity	ADTM D 926	180	200	240	270	
Specific gravity	ASTM D 792	1.11	1.13	1.16	1.17	
Hardness	ASTM D 2240	40	51	61	71	
Tensile Strength (MPa)	ASTM D 412	9.0	10.0	11.0	10.0	
Elongation (%)	ASTM D 412	700	550	520	450	
Toos at an atta (light and)	ASTM D 624 "B"	32	33	39	35	
real strength (kg/cm)	ASTM D 624 "C"	36	40	42	46	
Rebound (%)	JIS K 6255	55	54	49	45	
Volume Resistivity(Ω.cm)	ASTM D 257	1016	1016	1016	1016	
Dielectric Strength (Kv/mm)	ASTM D 149	25	26	24	26	
Food Contact **	FDA	Yes	Yes	Yes	Yes	

• FEATURES

- High Tear Strength & High Tensile Strength
- Comply with Reg. 21 CFR 177.2600
- Excellent Extrusion Processability & Molding Processability
- Good Temperature Resistant (220℃)
- High Transparent

APPLICATIONS

- High Property Articles
- Medical Rubber Articles (Tubing, Hose)
- Food Contacted Articles
- Sheet, Gasket
- Aircraft Articles
- Automotive article (Muffler hanger)

LOW COMPRESSION SET SILICONE RUBBER

This is specially designed for excellent compression Sets with post cure

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)

Typical Properties	Test Method	LCS 40
Colors	ASTM E 1716	Transparent
William's plasticity	ASTM D 926	140
Specific gravity	ASTM D 792	1.10
Plasticity	ASTM D 926	140
Hardness	ASTM D 2240	40
Tensile Strength(MPa)	ASTM D 412	5
Elongation(%)	ASTM D 412	280
Tear Strength(kgf/cm)	ASTM D624 "B"	10.6
Rebound Resilience(%)	JiS K 6255	78
Compression Sett(%)*1	ASTM D 395	5
Linear Shrinkage(%)	JiS K 6249	4
Volume Resistivity(ohn.com)	ASTM D 257	1015
Dielectric Strength(KV/mm)	ASTM D 149	26

(Compression Set : 177 °C ×22hrs)

• FEATURES

- Low Compression Set

- Excellent Extrusion Processability & Molding Processability

- O/A Roll
- Packing
- Gasket
- Sheet
- O-Ring
- Seal

STEAM RESISTANCE SILICONE RUBBER

HR-3700 series are very special grade which are specially designed & modified for high steam resistant for use direct steam & boiling water contacted applications such as rice jar packing, electric pot packing etc.

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)					
Typical Prop	perties	Test Method	HR-3700/50U	HR-3700/60U	HR-3700/70U
Color	rs	ASTM E 1716		Transparent	
William's p	lasticity	ASTM D 926	210	230	250
Specific g	gravity	ASTM D 792	1.13	1.15	1.18
Hardne	ess	ASTM D 2240	50	60	70
Tensile Stren	gth (MPa)	ASTM D 412	10.0	10.0	10.0
Elongatio	on (%)	ASTM D 412	400	350	300
Tear Strength	n (kgf/cm)	ASTM D 624 "B"	15	14	15
		ASTM D 624 "C"	29	32	30
Rebound (%)		JIS K 6255	65	65	60
Compression Set (%)		ASTM D 395	12	10	10
Linear Shrinkgage (%)		JIS K 6249	4.0	4.0	3.9
		PROPERTIES C	HANGE AFTER STE	AM AGING	
440 + 01	Har	dness (Points)	-2	-2	-2
110 °C Steam	Tens	ile Strength (%)	-11	-10	-8
30 Days	El	ongation (%)	-15	-12	-10
150.5.01	Har	dness (Points)	+1	+1	+1
150 °C Steam	Tens	ile Strength (%)	-47	-46	-47
30 Days	El	ongation (%)	-47	-47	-48
	PI	ROPERTIES CHAN	GE AFTER BOILING	WATER AGING	
400 4 . 01	Har	dness (Points)	+1	+1	0
100 ±1 °C Steam	Tens	ile Strength (%)	-2	-2	0
96hrs.	El	ongation (%)	-3	0	-2

• FEATURES

- Excellent Heat & steam resistant Properties
- Excellent rebound & compression set
- Excellent possibility

APPLICATIONS

- Rice Steam Cooker Packing
- Electric pot, teapot, packing, valves, O-ring - Steam Line Packing

7	
X	

(Compression Set : 177 °C ×22hrs)

METAL CASTING SILICONE RUBBER

There are specially designed silicone rubber for low temperature melting alloy metal casting and plastic polymer casting.

Catalvst:	HC-8/1.8phr	(171°C	×10min/200 ℃ ×	4hrs)
outuryot.	110 0/ 1.0pm	(1110	X1011111/200 0 //	

Typical Properties	Test Method	MC-50	MC-60	MC-70
Colors	ASTM E 1716	Translucent		
Specific gravity	ASTM D 792	1.15	1.17	1.19
Hardness	ASTM D 2240	50	60	70
Tensile Strength (MPa)	ASTM D 412	100	100	90
Elongation (%)	ASTM D 412	550	400	250
Tear strength (kgf/cm)	ASTM D 624 "B"	38	38	40
	ASTM D 624 "C"	37	37	38

• FEATURES

- High Mechanical Property
- High Heat Resistant
- Low Shrinkage
- High Elongation
- Produced comply with
- FDA Reg. 21CFR, 177.2600

- Alloy Casting
- Art Accessory Casting
- Ring Casting
- Other Casting

ELECTRIC CONDUCTIVE SILICONE RUBBER

There are specially designed electro conductive silicone rubber for use in special applications as below.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)						
Typical Properties	Test Method	HR-1526U	HR-1527U	HR-1528U		
Colors	ASTM E 1767	BLACK				
William's plasticity	ADTM D 926	500 600 750				
Specific gravity	ASTM D 792	1.16	1.2	1.21		
Hardness	ASTM D2240	60	70	78		
Tensile Strength (MPa)	ASTM D412	6	6.5	6.5		
Elongation (%)	ASTM D412	250	200	150		
Tooy attrapath (log(an)	ASTM D624 "B"	10	10	11		
rear strengtn (kgi/cm)	ASTM D624 "C"	18	18	18		
Linear shrinkage (%)	JIS K 6249	4.3	4.2	4		
Volume resistance (ohm · cm)	ASTM D 257	10	5	4		

FEATURES

- Electro conductivity (3-10omh.cm Volume Resistance)
- Very good elasticity
- Good heat resistant
- Good physical properties

APPLICATIONS

- Electro conductive parts
- Keypad contractors
- LCD Zebra
- EMI gasket
- Cable connectors
- Heaters

THERMAL CONDUCTIVE SILICONE RUBBER

There are designed for high thermal conductivity and high electrical insulation properties.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)

Grade No. Properties	Test Method	HR-770/60	HR-770/70	HR-770/80
Colors	ASTM E 1767		Dark Gray	
William's plasticity	ADTM D 926	260	280	300
Specific gravity	ASTM D 792	2.00	2.05	2.10
Hardness	ASTM D 2240	60	70	80
Tensile Strength (MPa)	ASTM D 412	3	3.5	4
Elongation (%)	ASTM D 412	400	300	100
Tear strength (kgf/cm)	ASTM D 624 "B"	10	10	10
	ASTM D 624 "C"	10	10	10
Linear shrinkage (%)	JIS K 6249	3	2.7	2.6
Volume Resistance (ohm·cm)	ASTM D 257	1015	1015	1015
Dielectric Strength (Kv/mm)	ASTM D 149	20	19	19
Thermal Conductivity (W/mk)	ASTM E 1530	0.7	0.8	0.9
Flame Retardancy	UL-94	V-1	V-0	V-0

FEATURES

- High thermal conductivity
- High electrical insulation properties
- High heat resistant
- Low volatility content
- Flame retardant (UL94V-0, V-1 Level)

- Heat transfer pads, Sheets, Packings
- CPU, Transformer, Transistor pads for heat transfer
- All kind of heat transfer parts

FLAME RETARDANT SILICONE RUBBER

There are specially designed for excellent flame retardant property and heat stability to be complied UL94V-0 on thickness.

Typical Properties	Test Methods	(W)	(B)	(W)	(B)
Colors	ASTM E 1767	White	Black	White	Black
William's plasticity	ASTM D 925	200	200	250	250
Specific gravity	ASTM D 792	1.43	1.43	1.47	1.47
Hardness	ASTM D 2240	55	55	70	70
Tensile Strength (MPa)	ASTM D 412	7.5	7.5	7.0	7.0
Elongation (%)	ASTM D 412	320	320	200	200
Tear strength (kgf/cm)	ASTM D 624 "B"	12	12	15	15
Linear shrinkage	JIS K 6249	3.2	3.2	2.5	2.5
Volume Resistivity(g.cm)	ASTM D 257	2x10 ¹⁵	2x10 ¹⁵	2x10 ¹⁵	2x10 ¹⁵
Dielectric Strength(KV/mm)	ASTM D 149	25	25	25	25
Flame Retardancy	UL-94	V-0	V-0	V-0	V-0

Catalyst: HC-8/1.8phr (171℃×10min/200℃×4hrs)

• FEATURES

- Flame Retardant UL94V-0, (UL E-98818) - Halogen Free
- Good Heat Stability (-50 °C ~ +250 °C)
- Good Electrical Property & Excellent
- process ability in molding & Extruding

APPLICATIONS

- Flame Retardant Rubber Parts
- Construction article (Fire- Proof gasket)
- PDP,TFT-LCD Lamp holder
- Special Wires

WIRE & CABLE SILICONE RUBBER

There are specially designed for wire & cable insulation to be complied UL AWG wires and various lead wires.

Catalyst: HC-2/1.5phr (116°C ×10min)

Typical Prope	rties	Test Method	HR-1660U	HR-1670U
Colors		ASTM E 1767	Wr	ite
William's plastic	ity	ADTM D 926	240	250
Specific gravit	у	ASTM D 926	1.4	1.45
Hardness		ASTM D 792	63	70
Tensile Strength (I	MPa)	ASTM D 2240	8	8
Elongation (%)	ASTM D 412	220	180
Tear strength (kgf/cm)		ASTM D 412	20	20
		ASTM D 624 "B"	23	23
Volume resistivity (ohm.cm)		ASTM D 624 "C"	1 ×10 ¹⁵	1×10 ¹⁵
Dielectric strength (kv/mm)		ASTM D 149	22	22
	PROPE	RTIES CHANGE AFTER	R HEAT AGING TEST(ASTN	1 D 573)
	H	Hardness change	2	2
$250^{\circ}C \times 72hrs$	Tensil	e Strength change (%)	-12	-13
	Elongation change (%)		-20	-20

• FEATURES

- Excellent temperature stability
- Excellent Process ability in extrusion
- Good Mechanical and electrical properties

- Appliance wire (Braided or Non-Braided)
- Fixture wire (Braided or Non-Braided)
- Motor lead wires (Braided or Non-Braided)
- Heater lead wires (Braided or Non-Braided)
- Power control and instrument cables
- Automotive wires (Braided)

HIGH VOLTAGE INSULATOR SILICONE RUBBER

There are specially designed silicone rubber compounds for high voltage insulator application, which require excellent performance in contaminated environments.

Catalyst: HC-8/1.8phr (171 ℃ ×10min)

Grade No.		HVI-65	HVI-70	
Application		Insulator Surge Arrestors		
Colors	ASTM E 1767	Gra	ły	
Specific gravity	ASTM D 792	1.52	1.54	
Hardness	ASTM D 2240	65	70	
Tensile Strength (MPa)	ASTM D 412	50	50	
Elongation (%)	ASTM D 412	250	230	
Tear Strength (kgf/cm)	ASTM D 624 "B"	15	13	
Rebound (%)	JIS K 6255	50	49	
Compression Set (%)	ASTM D 395	24	24	
Linear Shrinkage (%)	JIS K 6249	2.9	2.85	
Flame Retardant	IEC 60695	V-0	V-0	

(Compression Set : 177 ℃ ×22hrs)

Electrical Prope	rties	HVI-65	HVI-70
Volume resistivity (ohm.cm)	ASTM 257	2.5×1015	2.5 ×1015
Dielectric strength (kv/mm)	ASTM 149	23	23
Dielectric Constant (1KHz)	ASTM 150	4.0	4.0
Dissipation Factor (1KHz)	ASTM 150	0.03	0.03
Tracking Resistant (KV)	IEC 60587	4.5	4.5
Arc Resistant (Second)	ASTM D 495	>200	>200

FEATURES

- Excellent Tracking and Erosion Resistance
- Excellent Dielectric Strength
- Superior Water Repellency (Hydrophobicity)
- Excellent Weathering and Air Pollution
- Low Leakage Current
- Excellent Injection Molding Processibility

APPLICATIONS

- Suspension Insulation
- Line Post Insulator
- Surge Arrestor
- Cable Terminator and Connectors

INSTRUCTION OF USE

- This Production is supplied with catalyst (Ready to use) but without color. The suitable curing temperature is 160 $^{\circ}$ C ~ 180 $^{\circ}$ C compression molding and injection molding process.

HANDING AND SAFETY

- See MSDS

SPECIFICATION

- All our technical information data should not be used as a specification.

STORAGE AND WARRANTY

- The warranty period is 6months from date of shipment.
- Must be stored cool/dark place

OIL BLEED SILICONE RUBBER

There are special silicone rubbers for self-sealing grommets and connectors of automobile industries.

Catalyst: HC-8/1.8phr (171℃ ×10min/200℃ ×4hrs)						
Grade No. Properties		Test Methods	SL-30U	SL-40U	SL-50U	SL-60U
Colors		ASTM E 1767		Natura	I White	
William's plas	sticity	ADTM D 926	150	165	200	210
Specific gra	avity	ASTM D 792	1.1	1.13	1.16	1.17
Hardnes	s	ASTM D2240	30	40	50	60
Tensile Strengt	h (MPa)	ASTM D412	7	7.5	8.5	8.5
Elongation (%)		ASTM D412	500	400	300	260
Tear strength (kgf/cm)		ASTM D624 "B"	10	10	10	11
		ASTM D624 "C"	18	21	27	25
Linear shrinkage (%)		JIS K 6249	4.3	3.9	3.5	3.3
Compression set (%)		ASTM D395	10	6	5	6
	PROPERTI	ES CHANGE AFTE	R HEAT AGING	G TEST (ASTM	D 573)	
	Hardr	less change	-11	-3	2	2
225°C x 96hrs	Tensile Stre	Tensile Strength change (%)		-22	-16	-15
	Elongati	on change (%)	-20	-26	-7	-10
PRO	ANGE AFTER HEA	T AGING TEST	(ASTM D 573)	ASTM #1.OIL		
	Hardr	less change	-11	-11	-12	-12
1500C x 70bm	Tensile Stre	ength change (%)	-38	-28	-20	-22
150 0 X 70115	Elongati	on change (%)	-11	-10	-14	-12
	Volume change (9/)		20	05	01	20

FEATURES

- Good Heat and oil Resistance properties
- Excellent process ability in injection & molding
- Good Mechanical properties

APPLICATIONS

- Automotive article (Wire harness connectors, grommets, single wire gasket, flat gaskets)
- Industrial O-Ring, Oil Seal

HIGH TRANSPARENT SILICONE RUBBER

There are highly transparent and mechanically strong Silicone rubbers. There are various processing method (extruding, molding)

Typical Properties	Test Methods	HR-2130	HR-2140	HR-2150	HR-2160	HR-2170
Colors	ASTM E 1767			Transparent		
William's plasticity	ADTM D 926	170	190	210	220	240
Specific gravity	ASTM D 792	1.09	1.10	1.14	1.16	1.18
Hardness	ASTM D2240	30	40	50	60	70
Tensile Strength (MPa)	ASTM D412	8.5	10	11	11	11
Elongation (%)	ASTM D412	700	650	550	500	350
To an above ath (harf/and)	ASTM D624 "B"	20	25	25	20	15
l ear strengtn(kgt/cm)	ASTM D624 "C"	34	37	40	42	40
Linear shrinkage (%)	JIS K 6249	4.3	4.2	4	4	3.8

Catalyst: HC-8/1.8phr (171°C ×10min/200 °C ×4hrs)

FEATURES

- High super transparency
- High tear strength
- Hardness from 30 ~ 70
- All ingredients selected comply with FDA Reg. 21 CFR, 177.2600

- Baby Nipples
- Medical tubing
- Food contact articles
- High tear strength articles

HIGH HEAT RESISTANCE SILICONE RUBBER

There are specially designed for use in high temperature application in range of 250 $^\circ\!C\text{--}315\,^\circ\!C$ in limited period.

-	Typical Propertie	s		HR-520U	HR	-620U	HR-720	U	н	R-820
	Colors	ASTM E	1716		Na	Natural			1	Beige
Will	iam's plasticity	ASTM D	926	220	2	30	290			300
S	pecific gravity	ASTM D	792	1.13	1	.16	1.18			1.34
	Hardness	ASTM D :	2240	52		60	72			80
Tensil	e Strength (MPa)	ASTM D	412	10.0	1	0.0	10.0			8.5
E	longation (%)	ASTM D	412	400	2	250	250			100
Toor	atronath (kaf/am	ASTM D 62	24 "B"	15		13	10			10
Tear	strengtri (kgi/crii	ASTM D 62	24 "C"	29		25	30			24
Reb	ound resilience	JIS K 62	255	55		55	50			50
Com	pression set (%)	ASTM D	395	30	:	22	29			28
Line	ar shrinkage (%)	JIS K 62	249	4.0		3.9	3.8			2.8
Volume	resistively (ohm.cm)	ASTM D	257	1015	1	015	1015			1015
Dielectri	c strength (Kv/mm)	ASTM D	149	22		22 22			22	
	PROPERT	IES CHAN	IGE A	FTER HEAT A	GING TI	EST (AST	M D 573)			
	Color	Beige	Red	d Beige	Red	Beige	Red	Beig	е	Red
	Hardness (Points)	-2	+4	-2	+2	-3	-3	-3		-3
250°CX7	Tensile Strength (%)	-28	-26	3 -28	-26	-26	-26	-25		-25
2hrs	Elongation (%)	-30	-30) -30	-30	-28	-28	-26		-26
0000010	Hardness (Points)	+3	+2	+3	+3	+4	+4	+4		+4
300°CX2	Tensile Strength (%)	-35	-32	2 -35	-34	-34	-34	-33		-33
4hrs	Elongation (%)	-36	-34	-36	-34	-32	-32	-30		-30

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)

• FEATURES

- Specially designed for high temperature resistant in range of 250 $^\circ\!\!C{\sim}315\,^\circ\!\!C$
- Excellent all properties
- Excellent for compression molding and extrusion

APPLICATIONS

- Electric Dry-oven Gaskets
- Electronic Micro-oven Gaskets
- Autoclave Packing
- Glass tube handling of Pads

ADDITION CURE SILICONE RUBBER

There are specially designed for Addition cure AD-1100 series complies with BfR & FDA Food contact article

Catalyst: HC-25A/1.0phr (140 °C ×10min/200 °C ×4hrs)

Grade	Test Method	AD-1150	AD-1160	AD-1170
Colors	ASTM E 1767		Transparent	
William's plasticity	ASTM D 926	200	220	250
Specific gravity	ASTM D 792	1.12	1.16	1.20
Hardness	ASTM D 2240	50	60	70
Tensile Strength (MPa)	ASTM D 412	11.5	10	10.5
Elongation (%)	ASTM D 412	670	550	420
Tear Strength (kgf/cm)	ASTM D 624 "B"	26	24	21
Rebound Resilience (%)	JIS K 6255	55	49	45
Compression Set (%)	ASTM D 395	26	24	22
Linear shrinkage (%)	JIS K 6249	2.8	2.7	2.4
Volume Resistively (ohm.cm)	ASTM D 257	1.5 ×1015	2.1×1015	1.6 ×10 ¹⁵
Dielectric strength (KV/mm)	ASTM D 149	26	27	28

(Compression Set : 177 ℃ ×22hrs)

FEATURES

- Excellent process ability in extrusion & mold
- Excellent Mechanical Properties & good Transparency
- Non Yellowshi
- Complies with FDA BfR recommendation for articles in contact with food

- Food Contact article (Hoses, Tubing, Packing)
- Healthcare, Medical Devices (Seal, Tubings)

ADDITION CURE SILICONE RUBBER (GRNERAL PURPOSE)

There are specially designed for Addition cure AD-3900 series complies with BfR & FDA Food contact article

Typical Properties	Test Method	AD-3950	AD-3960	AD-3970	AD-3980
Colors	ASTM E 1767		Trans	lucent	
William's plasticity	ASTM 926	200	225	250	280
Specific gravity	ASTM D 792	1.15	1.16	1.18	1.23
Hardness	ASTM D2240	50	62	72	80
Tensile Strength(MPa)	ASTM D412	95	95	90	80
Elongation(%)	ASTM D412	470	420	280	250
Toor strongth//raf/om)	ASTM D624 "B"	15	15	20	15
rear strengtri(kgi/em)	ASTM D624 "C"	32.5	33	35	30
Rebound Resilience(%)	JIS K 6255	65	52	52	50
Compression Set(%)*1	ASTM D 395	24	26	25	30
Linear shrinkage(%)	JIS K 6249	2.9	2.7	2.6	2.4
Volume Resistively(ohn.com)	ASTM D 257	2.1×1014	3.4×1014	4.2 ×1014	4.5 ×1014
Dielectric strength(KV/mm)	ASTM D 149	26	25	24	25

Catalyst: HC-25A/1.0phr (140 °C ×10min/200 °C ×4hrs)

• FEATURES

- Excellent process ability in mold
- Excellent Mechanical Properties & good
- Transparency - Non Yellowshi
- Complies with FDA BfR recommendation for articles in contact with food

APPLICATIONS

- Food Contact article (Hoses, Tubing, Packing)

(Compression Set : 177 ℃ ×22hrs)

CLOSED CELL SPONGE SILICONE RUBBER

There are specially designed compounds for making closed cell sponge articles. The SPG compounds are very suitable for continue extruded profiles producing by hot air and hot liquid system.

Typical Properties	SPG-30	SPG-50	SPG-60	SPG-70
Blowing Ratio (%) approx.	200	200	200	200
Density	0.35	0.45	0.50	0.55

FABRICATION TECHNIQUE

- Soften & Catalyst Mixing

- SPG Compounds must be pre-softening in the 2-roll mill for 3-5 min. and add suitable catalyst HC-2, 1.5~2.5phr depend on density and curing condition.
- The catalyst must be well dispersed with SPG compounds. And pigment can be added in these stages together with HC-2.
- The mixing temperature must be keep within 50 $^\circ\!{\rm C}$ in any cases.
- Extrusion, Foaming, Curing
- Cold extruder is required (less 50°C)
- HAV Tunnel : 1st zone : 150~180 °C/ 2nd Zone : 180~200 °C/ 3rd Zone : 200~250 °C
- Post Cure : 180~200 °C/4hrs

DIFFICULTIES

- There are many difficult factors on the fabrication specially dimension control and profile shape, hardness control, density control. Etc...
- All the technical and right products can be made only by longer experience.

• FEATURES

- Very low compression set at high & low temperature excellent weather resistant

- Dry oven gaskets, Seals
- Building glazing gasket, seals
- Building movement gap absorbing gasket
- Food container gasket, packing
- Hot liquid pipe line insulation
- O/A Rolls
- Many suitable application

HIGH PERFORMANCE EXTRUSION MOLDING SILICONE RUBBER

There are specially designed as high performance base to be used for wide range of applications with Extrusion, Press molding, Injection molding.

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs) Typical Properties Test Method Base-300 Base-500 Base-700 ASTM E 1767 Transparent Colors ASTM D 926 160 200 250 William's plasticivt Hardness ASTM D 792 1.08 1.14 1.18 ASTM D 2240 Hardness 35 53 70 Tensile Strength (MPa) ASTM D 412 9.0 11.0 11.0 ASTM D 412 Elongation (%) 600 550 400 Tear strength (kgf/cm) ASTM D 624 "B" 16 22 24 65 Rebound (%) JIS K 6255 50 50 ASTM D 395 45 31 Compression set 40 Volume Resistivity(QXcm) ASTM D 257 2×10^{15} 4×10¹⁸ 4×10^{15} ASTM D 149 Dielectric Strength(Kv/mm) 25 26 26 Food Contact ** FDA Yes Yes Yes

FEATURES

- Good Temperature resistant
- Medium-High Mechanical properties
- Excellent Extrusion Processability
- Good Molding Processability
- Good Electrical Properties
- Easy Blendable of each Hardness
- More Silica Extendable
- Comply with FDA Food Reg. 21CFR, 177.2600 21CFR 177.2600

APPLICATIONS

- Automotive Parts
- Electrical Parts
- Food Contacted articles
- Tubings, Hoses
- Profiles Packings
- Sheets
- All Molded & Extruded Products

SPACER PANEL SILICONE RUBBER

This is specially designed Thin thickness Sheet and high elastic silicone rubber for specific applications.

Typical Properties	Test Method	HR-SPR
Colors	ASTM E 1716	Translucent
William's plasticity	ADTM D 926	190
Specific gravity	ASTM D 792	1.13
Hardness	ASTM D 2240	42
Tensile Strength (MPa)	ASTM D 412	8
Elongation (%)	ASTM D 412	400
Tear strength (kaf/cm)	ASTM D624 "B"	8
	ASTM D624 "C"	10
Rebound Resilience (%)	ASTM D 395	60
Compression set (%)*1	JIS K 6255	25

(Compression Set : 177 °C ×22hrs)

FEATURES

- Good physical property
- Excellent processability in press molding & injection and all other process
- Qualified UL94HB
- Comply with FDA Reg. 21 CFR, 177.2600

- General Industrial Parts
- Electronic Parts, Keypad, O/A rolls
- Food contact parts, packing
- Automotive parts

HIGH VOLTAGE CABLE SILICONE RUBBER

This is a specially designed silicone rubber for high dielectrics break down voltage and excellent other electrical properties, which are, required special silicone rubber cables.

Catalyst: HC-2/1.5phr (116°C ×10min/200 °C ×4hrs)					
Typical Properties	Text Method	HR-700UHV			
Colors	ASTM E 1717	BEIGE WHITE			
William's plasticity	ADTM D 926	250			
Specific gravity	ASTM D 792	1.2			
Hardness	ASTM D 2240	70			
Tensile Strength (MPa)	ASTM D 412	11			
Elongation (%)	ASTM D 412	300			
Toos alvenath (Laf (an)	ASTM D 624 "B"	14			
real strength (kgi/chi)	ASTM D 624 "C"	40			
Volume resistivity (ohm-cm)	ASTM D 257	1x10 ¹⁶			
Dielectric strength (Kv/mm)	ASTM D 149	32			
PROPERTIES CHANGE AFTER HEAT AGING TEST (ASTM D 573)					
	Hardness change	+2 ~ 3			

220 $^\circ\!$	Tensile Strength change (%)	-3 ~10
	Elongation change (%)	-10 ~13
	Hardness change (Points)	+3 ~ 6
$250{}^\circ\!$	Tensile Strength change (%)	-10 ~ 18
	Elongation change (%)	-15 ~ 22

• FEATURES

- Excellent heat aging properties
- Excellent dielectric strength
- Excellent mechanical properties
- Excellent extrusion workability

APPLICATIONS

- High voltage FBT cable of electric microwave oven
- High voltage C/TV cable/wires
- High voltage aircraft cable
- High voltage ignition cable of automobile
- High voltage parts, bushing, insulation tubes

OIL RESISTANT SILICONE RUBBER

There are specially designed silicone rubber for the better oil resistance Specially to the ASTM #1 oil than other general silicone rubber grades.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)							
Typical Proper	Typical Properties		HR-431 HR-531		HR-731		
Colors		ASTM E 1767		Natural			
William's plastic	city	ADTM D 926	250	270	300		
Specific gravit	ty	ASTM D 792	1.23	1.32	1.4		
Hardness		ASTM D2240	60	71	81		
Tensile Strength (MPa)		ASTM D412	6.5	7.5	7.0		
Elongation (%)		ASTM D412	250 200		150		
T D D D D D		ASTM D624 "B"	15	15	15		
rear strengtri (kgi	/cm)	ASTM D624 "B"	28	24	23		
Compression Se	t (%)	ASTM D395	28	30	33		
PROPER	RTIES C	HANGE AFTER OIL	IMMERSION TEST	(ASTM D 471) AST	M #1.OIL		
	Hardr	ness Change (point)	-3	-2	-2		
150 so 1 72bro	Ter	nsile Strength (%)	-10	-9	-10		
100 C X 12113	E	Elongation (%)	-12	-10	-10		
		Volume (%)	10	8	9		

(Compression Set : 177 °C×22hrs)

• FEATURES

- Specially designed for Oil Resistance
- Excellent all properties
- Excellent for compression molding and extrusion

APPLICATIONS

- O-Ring, Automotive Rubber Parts, Seals.

NO POST CURE SILICONE RUBBER

There are specially designed general-purpose silicone rubber, which reach optimum balance of properties without post cure.

Catalyst: HC-8/1.8phr (171 °C ×10min/No Post Cure)

Typical Properties	Test Method	HR-NPC-140	HR-NPC-180
Colors	ASTM E 1716	Transparent	Beige
William's plasticity	ADTM D 926	190	300
Specific gravity	ASTM D 792	1.11	1.43
Hardness	ASTM D 2240	42	80
Tensile Strength (MPa)	ASTM D 412	8.5	8.5
Elongation (%)	ASTM D 412	400	150
Toor strength (kof/om)	ASTM D 624 "B"	10	11
real stiength (kgi/cm)	ASTM D 624 "C"	25	22
Rebound resilience (%)	JIS K 6255	65	45
Compression set (%)*1	ASTM D 395	20	15
Linear shrinkage (%)	JIS K 6249	4	3.2

FEATURES

- Excellent elastic properties.
- Post curing is not required in case of industrial use (cost saving / short lead time)
- Can be blended for intermediate hardness between 40 and 80 hardness.

APPLICATIONS

- All industrial rubber articles (molded, extruded) - Industrial rolls.
- Seal packing, Gaskets, Sheets.

(Compression Set : 177 ℃ ×22hrs)

HIGH TRANSPARENT, HIGH TEAR STRENGTH SILICONE RUBBER

There are specially designed for use in high transparent and high mechanical strength applications in food and medical industries.

Typical Properties	Test Methods	HR-1130	HR-1140	HR-1150	HR-1160	HR-1170	
Colors	ASTM E 1767	Transparent					
William's plasticity	ADTM D 926	160	195	210	230	260	
Specific gravity	ASTM D 792	1.08	1.10	1.12	1.16	1.19	
Hardness	ASTM D2240	30	41	52	60	70	
Tensile Strength(MPa)	ASTM D412	9.0	9.0	9.5	10.0	10.0	
Elongation (%)	ASTM D412	700	600	450	400	300	
Tear strength(kgf/cm)	ASTM D624 "B"	10	20	12	14	14	
	ASTM D624 "C"	25	36	38	38	37	
Linear shrinkage (%)	JIS K 6249	4.3	4	3.9	3.6	4	

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)

• FEATURES

- High transparency.
- High tear, tensile strength
- Comply with FDA Reg. 21 CFR, 177.2600
- Excellent for extrusion, molding, injection.

- Baby Nipples (HR-1140)
- Goggles (HR-1150, 1160, 1170)
- Medical products
- Food contact products
- High mechanical products

LOW HARDNESS & HIGH ELASTIC SILICONE RUBBER

HR-1921U(T) is specially designed low hardness and high elastic silicone rubber for specific applications.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)

Typical Properties	Test Methods	HR-1921U(T)
Colors	ASTM E 1767	Translucent
William's plasticity	ADTM D 926	135
Specific gravity	ASTM D 792	1.04
Hardness	ASTM D 2240	20
Tensile Strength (MPa)	ASTM D 412	5.5
Elongation (%)	ASTM D 412	600
To an observable (loof/exe)	ASTM D 624 "B"	8
i ear strengtn (kgt/cm)	ASTM D 624 "C"	10
Rebound resilience (%)	ASTM D 1054	60
Compression set (%)	ASTM D 395	< 25
Linear shrinkage (%)	JIS K 6249	4.3

• FEATURES

- Low shore A hardness and excellent elastic properties
- Excellent molding & injection processability.
- Good heat stability.
- Produced comply with FDA Reg. 21CFR, 177.2600

APPLICATIONS

- O/A Rolls (Low hardness) replace RTV.
- Automotive connector sealing parts
- (protect humidity, water, dust...)
- Zebra connectors
- Soft packings & caps

HIGH STRENGTH SILICONE RUBBER

HR-431,531 and 731 are specially designed for high strength applications.

Catalyst: HC-8/1.8phr (171° $_{\mathbb{C}}$ ×10min/200° $_{\mathbb{C}}$ ×4hrs)						
Typical Properties	Test Method	HR-431	HR-531	HR-731		
Color	ASTM E 1716		Transparent			
Specific Gravity	ASTM D 792	1.11	1.15	1.21		
Hardness	ASTM D 2240	40	50	70		
Tensile Strength (MPa)	ASTM D 412	9.5	11	10		
Elongation (%)	ASTM D 412	700	650	450		
Tear Strength (kgf/cm)	ASTM D 624 "B"	38	39	40		
Rebound resilience (%)	JIS K 6255	50	50	45		
Compression set (%)	ASTM D 395	45	45	50		
Volume Resistivity (ohm.cm)	ASTM D 257	1016	1016	1016		
Dielectric Strength (KV/mm)	ASTM D 149	20	20	20		
Dielectric constant (1KHz)	ASTM 150	2.9	2.9	2.9		
Food Contact	FDA	YES	YES	YES		

(Compression Set : 177 °C×22hrs)

FEATURES

- High Tear Strength
- High Tensile Strength
- High Elongation
- Excellent Extrusion Processing
- Good Molding Processing
- Comply with FDA Reg. 21 CFR 177.2600

- High Mechanical Articles
- Food Contact Articles.
- Medical Articles (For External use only)
- Air Craft Parts

HIGH TEMPERATURE UL WIRE

High Temperature UL Wire series are very specially designed and modified for high temperature resistant wire & cable insulation to meet to UL 150 $^{\circ}_{\rm C}$ and 200 $^{\circ}_{\rm C}$ wires.

Typical Prope	rties	Test Method	HR-60HT	HR-65HT	HR-70HT	
Colors ASTM E 1767		ASTM E 1767		Beige	-	
William's plasti	city	ADTM D 926	240	250	260	
Specific gravi	ity	ADTM D 926	1.22	1.25	1.3	
Hardness		ASTM D 792	60	65	70	
Tensile strength (MPa)		ASTM D 2240	9	90	90	
Elongation (%)		ASTM D 412	330 250		220	
		ASTM D 412	16 16		16	
l ear strength (kg	jt/cm)	ASTM D 624 "B"	20	20	20	
	PROPE	RTIES CHANGE A	FTER HEAT AGING	TEST (ASTM D 573)	
	Hardness change		+2	+2	+2	
$225^{\circ}_{\circ} \times 72$ hrs	Tensile	Strength change (%)	-14	-12	-13	
	Elongation change (%)		-20	-19	-18	
	Ha	ardness change	+4	+4	+4	
$225^\circ_{ m C} imes72{ m hrs}$	Tensile	Strength change (%)	-28	-27	-27	
	Elon	gation change (%)	-26	-27	-26	

Catalyst: HC-2/1.5phr (116 °C ×10min/200 °C ×4hrs)

• FEATURES

- Excellent heat aging stability for UL wires
- Excellent electrical properties
- Excellent processability of wire cable.

APPLICATIONS

- Wire and cables
- Tubing, Profiles
- Gaskets, Packing

HIGH VOLTAGE RESISTANT SILICONE RUBBER

HRV-3 Series are specially designed for high voltage resistant applications of high voltage cable connectors, silicone insulators, insulation tubes and sleeves, high voltage cables.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)					
Typical Properties	Test Method	HRV-3/40	HRV-3/50	HRV-3/60	HRV-3/70
Color	ASTM E 1716		Transp	arent	
William's plasticity	ASTM D 926°°	1.11	1.14	1.15	1.18
Specific Gravity	ASTM D 792	170	200	230	270
Hardness	ASTM D 2240	40	50	60	70
Tensile Strength (MPa)	ASTM D 412	100	95	95	95
Elongation (%)	ASTM D 412	650	450	350	200
To an Observable (Institute)	ASTM D 624 "B"	30	16	17	18
Tear Strengtn (kgt/cm)	ASTM D 624 "C"	35	40	41	42
Rebound resilience (%)	JIS K 6255	58	58	57	55
Linear shrinkage (%)	JIS K 6249	4.2	4	3.9	3.8
Volume Resistivity (ohm.cm)	ASTM D 257	2 ×10 ¹⁶	2 ×1016	2×1016	2×1016
Dielectric Strength (KV/mm)	ASTM D 149	27	30	30	30

• FEATURES

- Very high dielectric resistant
- Excellent all others electrical properties
- Very high mechanical properties
- Excellent hydrophobic, water repellent
- Excellent resistant to UV, Ozone and ground environments

- Cable connectors
- Silicone rubber insulators
- Electrical insulation tubes, sleeves
- High voltage cable insulation

CERAMIFIABLE HCR SILICONE FOR SAFETY CABLES

HR-6023U(W) & HR-7023U(W) is specially designed a peroxide crosslinking silicone rubber for the manufacture of silicone insulated safety cables that maintain circuit integrity in case of fire.

Typical Properties	Test Method	HR-60	23U(W)	HR-702	HR-7023U(W)	
Color	ASTM E 1716		Whi	te		
Catalyst		HC-2	DCP	HC-2	DCP	
Specific Gravity	ASTM D 792	1.32	1.32	1.32	1.32	
Hardness	ASTM D 2240	60	64	72	77	
Tensile Strength (MPa)	ASTM D 412	8.5	9	8	8.5	
Elongation (%)	ASTM D 412	280	320	250	300	
Tear Strength (kgf/cm)	ASTM D 624 "B"	18	20	18	20	
Volume Resistivity (ohm.cm)	ASTM D 257	6.4×10 ¹⁵	4.1×10 ¹⁵	6.4 ×1015	4.1 ×10 ¹⁵	
Dielectric Strength (KV/mm)	ASTM D 149	24	25	23	25	
Dielectric constant(50Hz)(¢ ;)	DIN VDE 0303	3.05	3.15	3.1	3.2	
Dissipation factor(50Hz)(tan 6)	DIN VDE 0303	20 ×10 ⁻³	24 ×10 ⁻³	10 ×10 ⁻³	14×10 ⁻³	

Catalyst: HC-2 1.5phr/DCP 1.0phr (171°C ×10min/200°C ×4hrs)

FEATURES

- Good mechanical and electrical properties
- Good rheological Properties
- Good heat stability
- In case of fire formation of a ceramic-like layer with high insulation resistance and good mechanical stability without formation of corrosive or toxic gases.
- In case of fire low smoke density

APPLICATIONS

- For flame resistant cable

AUTOMOTIVE MUFFLER HANGER GRADE HR-9300MH

HRS silicone rubber HR-9300MH is specially designed for Automotive muffler hanger purpose.

Catalyst: HC-8/1.8phr (171 °C ×10min/200 °C ×4hrs)					
Typical Properties	Test Methods	HR-9300MH			
Colors	ASTM E 171	Transparent			
Specific Gravity	ASTM D 792	1.15			
Hardness	ASTM D 2240	50			
Tensile Strength (MPa)	ASTM D 412	10			
Elongation (%)	ASTM D 412	800			
Toor Otropath ((of/op))	ASTM D 624 "B"	40			
Tear Strength (kgt/cm)	ASTM D 624 "C"	45			
Rebound resilience (%)	JIS K 6255	54			
Compression set (%)	ASTM D 395	35			

FEATURES

- High Tear Strength
- High Elongation Value
- High Tensile Strength
- Good Molding Processability
- High Transparent

- High Property Articles
- Medical Rubber Articles
- Food Contacted Articles
- Sheet, Gasket
- Aircraft Articles
- Muffler Hanger

SILICONE RUBBER FOR KEYPAD APPLICATION

HR-29X0U are high durometer translucent peroxide cured silicone rubber compounds for molding.

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)						
Typical Properties	Test Method	HR-2960U(T)	HR-2970U(T)			
Colors	ASTM E 1716	ucent				
William's plasticity	ASTM D 926°°	220	250			
Specific Gravity	ASTM D 792	1.17	1.2			
Hardness	ASTM D 2240	60	70			
Tensile Strength (MPa)	ASTM D 412	9	9			
Elongation (%)	ASTM D 412	400	350			
Tage Otrop ath (log(app)	ASTM D 624 "B"	13	13			
rear Strength (kgi/cm)	ASTM D 624 "C"	25	30			
Rebound resilience (%)	JIS K 6255	67	55			
Compression set (%)	ASTM D 395	19	16			
Linear shrinkage (%)	JIS K 6249	3.5	3.5			

FEATURES

- Translucent appearance
- High durometer grade available

APPLICATIONS

- Keyboard for musical instruments
- Transilluminate type key unit for cellular phones
- O-rings, gaskets, diaphragms, boots, sheets

SELF- ADHESIVE GRADE SAT-600U

SAT-600U is a special grade of silicone rubber that is specially designed as Self adhesive Grade.

Catalyst: HC-8/1.8phr (171 ℃ ×10min/200 ℃ ×4hrs)

Typical Properties	Test Method	SAT-600	
Color	ASTM E 1716	Transparent	
William's plasticity	ASTM D 926	250 ~ 350	
Specific Gravity	ASTM D 792	1.13 °æ 0.05	
Hardness	ASTM D 2240	50 ±5	
Tensile Strength (MPa)	ASTM D 412	8	
Elongation (%)	ASTM D 412	600	
Toos Otrop ath (log(opp)	ASTM D 624 "B"	13	
Tear Strength (kgt/cm)	ASTM D 624 "C"	35	
Rebound resilience (%)	JIS K 6255	50	

FEATURES

- Good mechanical properties.
- Good Adhesive Property
- Comply with FDA Reg. 21 CFR 177. 2600. for food contact applications

APPLICATIONS

- Electronic Insulation Tape

ROLL COVERING SILICONE RUBBER

HR-785/60, 70 and 80 are specially designed for roll covering purpose.

Cataly	vot.	$H_{-8/1}$	2nhr	(171)	80 V	∠10min	/200°0	V/hre)
Jalar	γοι.	110-0/1	.opin	(1/1	()/		200(,	X41110/

Typical Properties	Test Method	HR-785/60	HR-785/70	HR-785/80				
Colors	ASTM E 1716	Beige						
William's plasticity	ASTM D 926	200 ~ 250 250 ~ 300 260 ~ 3						
Specific Gravity	ASTM D 792	1.21	1.26	1.34				
Hardness	ASTM D 2240	60 70		80				
Tensile Strength (MPa)	ASTM D 412	8.5	9	8.5				
Elongation (%)	ASTM D 412	300 200		150				
To an Ohan adda (Last(ana)	ASTM D 624 "B"	11	13	11				
Tear Strength (Kgt/cm)	ASTM D 624 "C"	20	25	20				
Compression set (%)	ASTM D 395	20	16	15				
Linear shrinkage (%)	JIS K 6249	3.4	3.5	2.8				

FEATURES

- High temperature resistance
- Low compression set
- High releasing properties
- Less electro static properties

- Industrial roll covering
 - Industrial packing, gasket, bushings
- O-ring. Seals

ROLL COVERING SILICONE RUBBER (STEAM CURING METHOD)

HR-7470 and HR-7480 silicone rubber are specially designed for roll covering application with steam curing method. It also good for press molding with peroxide curing.

Typical Properties	Test Method	HR-7470	HR-7490							
Colors	ASTM E 1716	Beige								
William's plasticity	ASTM D 926	230	280							
Specific Gravity	ASTM D 792	1.25	1.35	1.45						
Hardness	ASTM D 2240	70	82	90						
Tensile Strength (MPa)	ASTM D 412	8.5	9	8						
Elongation (%)	ASTM D 412	200	120	70						
	ASTM D 624 "B"	11	12	8						
Tear Strength (kgt/cm)	ASTM D 624 "C"	22	18	15						
Compression set (%)	ASTM D 395	10	10	10						

(Compression Set : 177 °C×22hrs)

• FEATURES

- Excellent hardness stability
- Excellent releasing property
- Excellent heat stability
- Excellent chemical resistant

APPLICATIONS

- Industrial rolls
- Laminating rolls
- Stamping rolls
- Industrial rubber articles

ADDITIVES FOR SILICONE RUBBER

There are can be variously selected for the customer's purpose. There should be added on two-roll mill before cure.

CURING AGENTS

Name	Chemical Composition	Addition(phr)	Usage
HC-2	2,4 Dichlorobenzoylperoxide 50%	1.2°≠1.8	HAV, Coating Thick Section Molding
HC-3	Dicumyl Peroxide	1.0 ~ 2.0	General Molding, Steam Cure
HC-4	2,5 Dimethyl, 2,5(t-butylperoxy) hexane 50%	0.8 ~ 1.2	All Compression Molding Conductive Rubber
HC-8	2,5 Dimethyl, 2,5(t-butylperoxy) hexane 25%	1.6 ~ 2.4	Food Contact
HC-15AY	Special Pure Peroxide (25%)	1.8 ~ 2.0	Anti Yellowing Food contact
HC-25_A	Platinum Catalyst		HAV, Molding
HC-25_B	Inhibitor + Cross linker		HAV, Molding

HC-15AY curing agent is very effective for Less Odor, No or Less Yellowing, More Transparent purpose curing, but it may be little worse about mold releasing, if the mold is not chrome plate.

ADDITIVES

Additives	Color & Form	Functions	Addition Amount(phr)
ZA-1	White Paste	Improve Roll Mixing / Releasing	0.1 ~ 0.5
CA-1		Improve Mould Releasing	0.1 ~ 0.5
AS-1			0.1 ~ 0.5
HT-100	Light Yellow Paste	Improve Heat Resistant (280 °C)	0.5 ~ 1.0
HT-P	Clear Paste	" (250 °C)	0.2 ~ 0.5
HT-Red	Red Paste	" (300 °C)	2.0 ~ 3.0
FS-1	White Paste	Flame Retardant (94V-1)	3.0 ~ 5.0
FS-3	Black Paste	Flame Retardant (94V-0)	3.0 ~ 5.0
Softener	Clear Paste	Improve Softness/Mold Flow	1.0 ~ 5.0
CS-1	White Beige Paste	Reduce Compression Set	1.0 ~ 3.0

SELECTION GUIDE HCR / HIGH CONSISTENCY SILICONE RUBBER

				Standard Curing					
Type of Silicone Rubber	Application	Grade No.	Color (_※ 1)	Catalyst /Amount (Phr) %3	Press Cure Condition (°C/hrs)	Post Cure Condition (°C/hrs)	Specific Gravity	Plasticity (Wiliams)	Hardness (Shore A)
GENERAL PURPOSE FOR MOLDING GRADE	Molding	HR-1931U(T) HR-1941U(T) HR-1951U(T) HR-1971U(T) HR-1971U(T) HR-1975U(T) HR-1981U(T) HR-1961U(G) HR-1971U(G) HR-1981U(G)	LLLLLL NG NG	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10 171/10 171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4 200/4 200/4 200/4 200/4 200/4 200/4	1.09 1.13 1.15 1.16 1.20 1.20 1.21 1.24 1.35 1.42	160 180 210 230 240 260 280 230 250 280	30 40 50 70 75 80 60 70 80
GENERAL PURPOSE FOR EXTRUSION GRADE	Extrusion	BASE-30 BASE-50 BASE-60 BASE-70 BASE-75	TP TP TP TP TP	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4 200/4	1.08 1.14 1.16 1.18 1.19	150 210 230 250 260	31 51 60 70 75
LOW HARDNESS GRADE	Molding	SW-5 SW-8 SW-15 SW-20	TL TL TL	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4	1.01 1.01 1.02 1.06	90 90 120 120	8 10 15 20
SUPER HIGH HARDNESS GRADE	Extrusion/Molding	HR-1991U(T) HR-2290U(T)	TL TP	HC-8/1.8 HC-8/1.8	171/10	200/4 200/4	1.24 1.25	300 450	90 90
HIGH TEAR STRENGTH GRADE	Extrusion/Molding	HR-2500/40 HR-2500/50 HR-2500/60 HR-2500/70	TP TP TP TP	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4	1.11 1.13 1.16 1.17	180 - 240 270	40 51 61 71
LOW COMPRESSION SET GRADE	Molding	LCS40 HR-3700/50U	TP TP	HC-8/1.8 HC-8/1.8	171/10 171/10	200/4 200/4	1.10 1.13	140 210	40 50
STEAM RESISTANCE GRADE	Extrusion/ivioiding	HR-3700/600 HR-3700/700 MC-50	TP TI	HC-8/1.8 HC-8/1.8 HC-8/1.8	1/1/10 171/10 171/10	200/4 200/4 200/4	1.15 1.18 1.15	230 250	60 70 50
METAL CASTING GRADE	Molding	MC-60 MC-70		HC-8/1.8 HC-8/1.8	171/10 171/10	200/4 200/4	1.17 1.19	-	60 70
ELETRIC CONDUCTIVE GRADE	Molding	HR-15260 HR-15270 HR-15380	BK BK BK	HC-8/1.8 HC-8/1.8 HC-8/1.8	1/1/10 171/10 171/10	200/4 200/4 200/4	1.16 1.20 1.21	500 600 750	60 70 78
THERMAL CONDUCTIVE GRADE	Extrusion/Molding	HR-770/60 HR-770/70	DG DG	HC-8/1.8 HC-8/1.8	171/10 171/10	200/4 200/4 200/4	2.00 2.05	260 280	60 70
FLAME RETARDANT GRADE	Extrusion/Molding UL-94V_0	HR-5020U HR-7020U	W/BK	HC-8/1.8 HC-8/1.8	171/10	200/4	1.43	200	55 70
WIRE & CABLE GRADE	Extrusion	HR-1660U HR-1670U	W	HC-2/1.6	116/10		1.40	240 250	63 70
HIGH VOLTAGE INSULATOR GRADE	Molding, Surge Arrestors Suspension, Insulators	HVI-65 HVI-70	G G	HC-8/1.8 HC-8/1.8	171/10	-	1.52 1.54	240 240	65 70
OIL BREED GRADE	O-Ring, Oil seal Gasket, Wire	SL-30U SL-40U SL-50U SL-60U	NW NW NW NW	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10		1.10 1.13 1.16 1.17	150 165 200 210	30 40 50 60
HIGH TRANSPARENT GRADE	Extrusion/Molding	HR-2130 HR-2140 HR-2150 HR-2160 HR-2170	TP TP TP TP	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4 200/4	1.09 1.10 1.14 1.16 1.18	170 190 210 220 240	30 40 50 60 70
HIGH HEAT RESISTANCE GRADE	Extrusion/Molding	HR-5200 HR-6200 HR-7200 HR-8200	LY LY LY BW	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4	1.13 1.16 1.18 1.34	220 230 290 300	52 60 72 80
ADDITION CURE GRADE	Extrusion/Molding	AD-1150 AD-1160 AD-1170 AD-3950 AD-3960 AD-3970 AD-3980		HC-25A/1.0 HC-25A/1.0 HC-25A/1.0 HC-25A/1.0 HC-25A/1.0 HC-25A/1.0 HC-25A/1.0	140/10 140/10 140/10 140/10 140/10 140/10 140/10	200/4 200/4 200/4 200/4 200/4 200/4 200/4	1.12 1.16 1.20 1.15 1.16 1.18 1.23	200 220 250 200 225 250 280	50 60 70 50 62 72 80
CLOSED CELL SPONGE GRADE	Extrusion/Foaming Blowing ratio(200) Density(0.35~0.55%	SPG-30 SPG-50 SPG-60 SPG-70	-	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10	-			-
HIGH PROPERTY EXTRUSION MOLDING GRADE	Extrusion/Molding	BASE-300 BASE-500	TP TP	HC-8/1.8 HC-8/1.8	171/10 171/10	200/4 200/4	1.08 1.14	160 200	35 53 70
SPACER PANEL GRADE	Molding	HR-SPR		HC-2/1.5	116/10		1.18	190	42
OIL RESISTANT GRADE	Molding	HR-7000HV HR-707/60U HR-707/70U	GW	HC-2/1.5 HC-8/1.8 HC-8/1.8	116/10 171/10 171/10	200/4 200/4 200/4	1.20 1.23 1.32	250 250 270	60 71
NO POST CURE GRADE	Extrusion/Molding	HR-707/80U HR-NPC-140	GW TP	HC-8/1.8 HC-8/1.8	171/10	200/4 200/4	1.40	300 190	81 42
HIGH TRANSPARENT HIGH TEAR STRENTH GRADE	Extrusion/Molding	HR-NPC-180 HR-1130 HR-1140 HR-1150 HR-1160 HR-1170	TP TP TP TP TP TP	HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8 HC-8/1.8	171/10 171/10 171/10 171/10 171/10 171/10	200/4 200/4 200/4 200/4 200/4 200/4	1.43 1.08 1.10 1.12 1.16 1.19	300 160 195 210 230 260	80 30 41 52 60 70

%1 TL(Transiucent), NG(Naturai Gray), TP(Transparent), BW(Beige White), BK(Back), DG(Dark Gray), W(White), G(Gray), NW(Naturai White), LY(Light Yelow)

Propert	ies(<u>*</u> 2)			Permanent		Heat Resis 96 Hours	stance, Cha s At 220°⊖(anges After 428 °≓) %	Oil Resist At 150	tance, Cha ℃(302 °F)in	anges After ASTM No.	72 Hours 3 oil, %	Break Voltage,	down kV/mm	Volume R ୁ -	e <mark>sistivity,</mark> .cm
Tensile	Elogation	Tear S (KN	trength I/m)	Set, %	Rebound (%)	Hardness	Tensile	Flongation	Hardness	Tensile	Flongation	Weight	As Cured	After	As Cured	After
(kgf/ _{îll})	(%)	В Туре	С Туре	22Hours			Strength	Liongation		Strength	Liongation	Weight		in Water		in Water
65 75 80 80 95 85 85 85 80 80 75	500 400 230 200 210 160 210 150 120 600	8 8.5 8.5 9 8 8 8 8 8 8 8 8 10	16 18 20 20 22 23 189 20 18 16 25	16 14 13 15 12 14 19 21 26	61 66 70 65 62 56 60 54 55 42	+1 +1 +2 +2 +1 +1 +1 +1 +1 +1 +1 +1	-10 -12 -12 -10 -10 -10 -9 -9 -8 -13 -13	-20 -15 -15 -10 -10 -10 -10 -15 -10 -10 -20	-12 -12 -16 -13 -15 -15 -15 -15 -15 -15 -15 -15 -15 -28	-35 -36 -35 -35 -36 -36 -36 -35 -35 -35 -35 -35 -35	-30 -20 -30 -20 -20 -15 -20 -15 -15 -15 -20	+40 +34 +38 +30 +30 +30 +30 +26 +20 +55	22 23 23 23 23 23 23 23 22 22 21 25	21 22 22 22 22 22 22 22 22 22 22 22 21 24	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{15} \end{array}$	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{14} \\ 10^{14} \\ 10^{15} \\ 10^{15} \end{array}$
90 95 100 90 25 40 50 55 85 85 95 90	330 330 290 240 1100 1000 950 150 100 700	10 10 11 12.5 4 4 4 12 12 13 32	30 30 35 7 10 10 25 30 35 36	- - - - 22 25 18 12 16 30	- - - - - - 50 50 -	+2 +1 +1 - - - - -	- 15 -15 -14 -14 - - - - - - -	-20 -20 -15 -15 - - - - - - - - - -	-27 -27 -26 -26 - - - - - - - - - - -	-49 -49 -48 -48 - - - - - - - -	-21 -21 -18 -18 - - - - - - - -	+55 +55 +45 +45 - - - - - - -	26 26 27 - - - - - - - 25	26 26 26 - - - - - 25	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \end{array}$	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \end{array}$
100 110 50 100 100 100 100 100 100 90	550 520 450 280 400 350 300 550 400 250	33 39 35 10 15 14 15 38 38 38 40	40 42 46 15 29 32 30 37 37 37 38	37 - 40 5 12 10 10 - - -	- - 78 65 65 60 - - -	- - +1 +1 +2 - -	- - -15 -15 -15 - 15 - - - - - - - - - -	- - -20 -20 -15 - - -	- - -27 -26 -26 - - - -	- - -50 -49 -49 - 49 -	- - -20 -21 -18 - -	- - +45 +48 +42 - -	26 26 26 25 26 27 - -	26 26 26 26 24 26 26 26 -	10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵	10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ -
60 65 65 30 35 40 75 70 80 80 80 50	250 200 150 400 300 100 320 200 220 180 250	10 10 11 10 10 10 12 15 20 20 15	18 18 18 10 10 23 23 23 23 23 -	- - - 23 24 - - 24	- - - - - - - 30 30 - - - 50	- - - - +1 +1 +2 +2 -	- - -25 -23 -12 -13 -	- - - - - - - - - - 20 -20 -20 - 20 -	- -15 -15 -15 -10 -14 -11 - -	- -20 -15 -15 -15 -45 -48 - 48 - -	- -30 -30 -20 -29 -30 - -	- +20 +20 +10 +35 +34 - -	- 20 19 19 25 25 - - 23	- - 19 19 19 25 25 25 - 22	$\begin{array}{c} 10\\ 5\\ 4\\ 10^{15}\\ 10^{$	$\begin{array}{c} 10\\ 5\\ 4\\ 10^{15}\\ 10^{$
50 70 75 85 85 100 110 110 110 110	230 500 400 300 260 700 650 550 550 350 400	13 10 10 11 20 25 25 20 15 15	- 18 21 27 25 34 37 40 42 40 29	24 10 6 5 6 - - - 30	49 - - - - - - - 55	- -11 -3 +2 +2 - - - - - +1	-45 -22 -16 -15 - - - - - - -	- -20 -26 -20 -10 - - - - - - - - - - - - - 30	- -11 -11 -12 -12 - - - - - - - - - - 29	- -38 -28 -20 -22 - - - - - - - - - - - - - - - -	- -11 -10 -14 -12 - - - - - - - 40	- +29 +25 +21 +20 - - - - +45	23 - - - - - - - - - - - - - - - - - - -	23	10 ¹⁵ 10 ¹⁵ 10 ¹⁵ 10 ¹⁵ - - - - 10 ¹⁵	10 ¹⁵ - - - - - - - - - - - - - - - - - - -
100 100 85 115 100 105 95 95 90 80 80	250 250 100 670 550 420 470 420 280 250	13 10 26 24 21 15 15 20 15	25 30 24 - - - - -	22 29 28 26 24 22 24 26 25 30	55 50 55 49 45 52 52 52 52 50	+1 +2 -1 - - - -	-22 -20 -21 - - - - -	-30 -30 -28 - - - - - - - - -	-29 -30 -29 - - - - - - -	-48 -50 -49 - - - - - - -	40 -30 -29 - - - - - - -	+45 +44 +40 - - - - - - -	23 22 22 26 27 28 26 25 24 25 24 25	23 22 22 - - - - - -	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ \end{array}$	$\begin{array}{c} 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{14} \\ 10^{14} \\ 10^{14} \\ 10^{14} \end{array}$
- - 90 110 110	- - - - - - - - - - - - - - - - - - -	- - 16 22 24	- - - 31 37	- - 45 40 31	- - - 50 50	- +2 +2 +1	- -15 -18 -20	- -25 -23 -20	- -27 -28 -26	- -48 -45 -46	- -20 -20 -18	- +50 +52 +45	- 25 26 26	- - 24 26 26	- - 10 ¹⁵ 10 ¹⁵ 10 ¹⁵	- - 10 ¹⁵ 10 ¹⁵ 10 ¹⁵
80 110 65 75 70 85 85 90 90 90 95 100 100	400 300 250 200 150 400 150 700 600 450 400 300	8 14 15 15 15 10 11 10 20 12 14 14	10 40 28 24 23 25 25 36 38 38 38 37	25 - 28 30 33 20 15 28 30 31 29 25	- 60 60 58 65 45 55 60 60 60 60	- 2 - +2 +1 +2 +2 +1 +2 +2 +2 +2 +2	- -3 - -15 -14 -13 -20 -20 -18 -20	- -10 - - - - - - - - - - - 20 -25 -20 -22 -20 -22 -20	- -3 -2 -2 -20 -15 -28 -27 -26 -28 -28 -29	- -10 -9 -48 -46 -50 -45 -46 -50 -49	- -12 -10 -10 -20 -18 -20 -35 -40 -30 -25	- +10 +8 +9 +40 +22 +50 +45 +45 +42 +40 +40	32 25 26 26 27 27 25 27 27 27 26 27	- 32 24 26 25 27 27 27 24 26 26 25 26	$\begin{array}{c} -\\ 10^{16}\\ 10^{14}\\ 10^{14}\\ 10^{15}\\ 10^{15}\\ 10^{15}\\ 10^{16}\\ 10^{16}\\ 10^{16}\\ 10^{16} \end{array}$	$\begin{array}{c} - \\ 10^{16} \\ 10^{14} \\ 10^{14} \\ 10^{15} \\ 10^{15} \\ 10^{15} \\ 10^{16} \\ 10^{16} \\ 10^{16} \\ 10^{16} \end{array}$

**2 The propertesareto be taken as typical. Pease note these groentes are not a specification. The propertesare normal average value with the standard curing method, if use different catalyst and different curing condition, the value will be different.

#G-22,4-dchlorobenzoyperoxide 50% on slicone)/
 HG-82,5-Dmethyl 2,5t-butyperoxy/hexare 25% in slicone.

RELATED PRODUCTS

<Curing Agents>

HRS Products	Chemical Composition		Chemical Composition		Addition Amount (phr)	Curing Temp. (℃)	Uses
HC-1	Benzoyl Peroxide	50%	1.5~2.0	120~180	Dispersion Coating		
HC-2	2, 4 Dichlorobenzoyl Peroxide	50%	1.2~1.8	120~400	H.A.V. Extrusion/ Sponge		
HC-3	Dicumyl Peroxide	20%	0.5~0.8	150~180	All Molding Steam Cure		
HC-3M	Special Peroxide	25%	1.5~2.0	150~170	Baby Nipple		
HC-4	2,5 DMBPH	50%	0.8~1.2	170~200	All Molding Steam Cure		
HC-8	2,5 DMBPH	25%	1.8~2.0	н	н		
HC-15AY	Special Catalyst	25%	1.8~2.0	п	High Transparent		
PT-A	Platinum Complex		Control	120~250	Medical Tubing		
CL-A	Cross-Linker		н	н	u		

<Additives>

Additives	Color & Form	Functions		AdditionAmount (phr)			
ZA-1	White Paste	Improve Roll Mixing, Mold F	Release	0.3~1.0			
CA-1	н	"		0.3~1.0			
HT-100	Light Yellow Paste	Improve Heat Stability	250℃	0.5~1.0			
HT-200	н	"	250℃	0.5~2.0			
HT-300	н	"	250℃	0.5~2.0			
HT-P	Clear Paste	"	250℃	0.2~1.0			
HT-Red	Red Paste	"	300 <i>℃</i>	2.0~5.0			
FS-1	White Paste	Improve Flame Retarda	ant	3.0~5.0			
FS-3	Black Paste	"		3.0~5.0			

<Pigments>

Color & Form	Composition
White Paste	50%
Black Paste	ű
Ultra-Blue Paste	ű
Yellow Paste	ű
Green Paste	"
Red Paste	u
Red Brown Paste	ű
	Color & Form White Paste Black Paste Ultra-Blue Paste Yellow Paste Green Paste Red Paste Red Brown Paste

* RoHs free grade

<Others>

Products	Color & Form	Functions	Addition (phr)
HR-304T	Brown Liquid	Metal Bonding Primer	
BL-5	White Putty	Blowing Agent	4 ~ 8

CERTIFICATES

* The data and information presented in this catalog may not be relied upon to represent standard values. HRS. Co., Ltd, reserves the right to change such data and information, in whole or in part, in this catalog, including product performance standards and specifications without notice.

Users are solely responsible for making preliminary tests to determine the suitability of products for their intended use. Statements concerning possible or suggested uses made herein may not be relied upon, or be construed, as a guaranty of no patent infringement.

Pyongtaek Plant

7, Choopal Industrial Complex 2gil, Paengseong-eup, Pyeongtaek-city, Gyeonggi Province, KOREA 451-805 **TEL:** 82-31-655-8822 **FAX:** 82-31-691-5901

Asan Plant

103-15, Shinbong-Gil, Yeongin-Myeon, Asan-City,Chungcheongnam-do, KOREA 336-822 **TEL:** 82-41-543-4003 **FAX:** 82-41-543-4006

Seoul Office

#1605, Miwon B/D, 43 Yoido-dong, Youngdeungpo-ku, Seoul, KOREA 150-733 TEL: 82-2-780-6156~8 FAX: 82-2-785-7643

China Plant

Plant 1, Science & Technology Park No.777 Kangyuan Road, Suzhou Xiangcheng Economic Development Zone. **TEL:** 0512-6939-0288 **FAX:** 0512-6618-9388

www.hrssilicone.cn www.hrssilicone.com